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Abstract. The objective of this study was to determine
factors that affect cisplatin concentrations in human kidney
cortex. We used flameless atomic absorption spectro-
photometry to assay platinum in autopsy specimens of
kidney cortex obtained from 83 cisplatin-treated patients.
Concentrations were correlated with pretreatment factors
and treatment conditions using univariate nonparametric
statistics. Hierarchical stepwise multiple regression ana-
lyses of transformed (to normalize) data were then used to
assess which factors were most important, controlling for
other factors. Kidney-cortex platinum concentrations varied
from 0 to 14.8 ug/g (median, 2.04 pg/g). The cumulative
lifetime dose of cisplatin ranged from 10 to 1120 mg/m?
(median, 112 mg/m?). The time from the last cisplatin dose
to death was < 1-609 days (median, 38 days). According
to univariate statistics, factors that correlated (P<0.05)
with kidney-cortex platinum concentrations were the cis-
platin dose per course, the pretreatment serum urea level,
metoclopramide use (positive correlations), the time from
the last cisplatin treatment to death, and the pretreatment
serum albumin value (negative correlations). Factors that
approached significance (0.05=P=0.10) were a history of
hypertension, hyperbilirubinemia (positive), the serum
calcium level, and phenytoin use (negative). In the multiple
regression analysis, after controlling for the cisplatin dose
per course and the time from the last treatment to death,
only concurrent metoclopramide and phenytoin use entered
the model. The hydration volume did not affect corrected
kidney-cortex or kidney-medulla platinum concentrations.
The following conclusions were reached: (1) it may be
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feasible to use lower hydration volumes than those used
routinely, (2) any effect of hydration volume on cisplatin
nephrotoxicity may not be mediated via a reduction in
kidney-cortex platinum concentrations, (3) higher cisplatin
doses might be tolerated with new 5-hydroxytryptamine-3
(5HT-3) antiemetics than were tolerated with metoclopra-
mide, and (4) phenytoin should be tested for its ability to
reduce cisplatin nephrotoxicity.

Introduction

Cisplatin is one of the most active solid-tumor che-
motherapy drugs available. Although severe nephrotoxicity
was a problem in early clinical studies of cisplatin, vigor-
ous hydration and mannitol administration reduced ne-
phrotoxicity [1]. There are few data available on exactly
how much hydration is required to protect the kidneys.
Some studies suggest that nephrotoxicity decreases with
increased hydration volume [2], whereas others have shown
little impact of total hydration volume on nephrotoxicity as
long as some degree of hydration is given {3].

Concurrent use of the diuretic mannitol reduces cisplatin
nephrotoxicity in both animals [4, 5] and humans [10].
Mannitol did not alter kidney platinum concentrations in
animals [5], and there are no data on its effect on kidney
platinum concentrations in humans. Other diuretics have
had variable effects on cisplatin nephrotoxicity {4—8] and
kidney platinum concentrations in animals [4, 6, 9].

In different clinical and preclinical studies, various other
factors have also been found to affect the degree of cis-
platin nephrotoxicity. For example, high peak plasma pla-
tinum concentrations may augment cisplatin nephrotoxicity
[11-13], and steps taken to reduce peak plasma platinum
concentrations (such as slow as opposed to rapid adminis-
tration [14-16] or multiple-day as opposed to single-day
fractionation of a given total dose [17]) may also reduce
cisplatin nephrotoxicity [14—16] and decrease kidney pla-



tinum concentrations [17]. Several medications have also
been reported to reduce [18—46] or augment [47~49] cis-
platin nephrotoxicity with reduction in [22, 27, 44, 50],
augmentation of [19], or no change in [19, 30] kidney
platinum concentrations.

Various physiologic factors have also been found to
correlate with nephrotoxicity. For example low hemoglo-
bin, serum albumin, calcium and chloride levels as well as
high serum bilirubin and uric acid values may correlate
with cisplatin nephrotoxicity in humans [3, 51]. Cisplatin-
DNA adduct concentrations in rats may be affected by the
route of drug administration (intravenous versus in-
traperitoneal), diet, gender, and hormonal status [52].

In animals, the highest kidney platinum concentrations
after cisplatin administration have been found in the renal
cortex [53] and corticomedullary junction [53, 54], and the
major nephrotoxic effects of cisplatin appear to be on renal
tubules in this region [5, 53, 55, 56]. However, it is unclear
whether cisplatin nephrotoxicity is a concentration-depen-
dent phenomenon, since platinum-based drugs with dif-
fering degrees of nephrotoxicity achieve comparable con-
centrations in animal kidneys [55] and since the con-
centration of platinum is at least as high in liver as it is in
kidney [57, 58], yet cisplatin hepatic toxicity is very un-
common.

In a previous study of platinum concentrations in kid-
neys of 30 patients who had received cisplatin 0-240 days
antemortem, we found that kidney-cortex platinum con-
centrations correlated with nephrotoxicity [58]. In this
paper, we report results obtained in an additional 53 pa-
tients. In an effort to understand better the effect of various
factors on cisplatin nephrotoxicity, we also assessed which
of these factors correlated with platinum concentrations in
autopsy specimens of kidney-cortex in the entire population
of 83 patients.

Materials and methods

Between 1982 and 1990, unfixed autopsy samples of kidney were
collected from 83 patients who had received cisplatin at some time
antemortem as treatment for a malignancy. Renal cortex was separated
from renal medulla by sharp dissection and tissues were stored frozen
(-50°C) until assayed for platinum using a variation of a method
employed in our earlier studies [58].

Samples were assayed for platinum by flameless atomic absorption
spectrophotometry using an electrothermal atomization atomic absorp-
tion spectrometry system consisting of a Varion Techtron AA-1745
spectrophotometer, a GTA-95 graphite tube stomizer with an auto-
sampler and an Epson RX-80 printer. The instrument conditions for the
measurement of platinum were:  wavelength, 265.9 nm; slit width,
0.2 nm; and lamp current, 10 mA. Argon was used as the sheath gas.
The graphite tubes were pyrolitically coated. During the drying step,
the furnace temperature was 95° C (ramp, 15 s; hold, 25 s). During the
ashing step, the furnace temperature was 1300° C (ramp, 25 s; hold,
20 s5). During the atomization step, the furnace temperature was
2700° C (ramp, 1 s; hold, 2 s; internal flow rate, 0 ml/min). Matrix-
maiched standards were prepared from a 1-g/l solution of cisplatin
(Platinol, Bristol-Myers Squibb Pharmaceuticals, Montreal). Nitric
acid (BDH, Toronto) was of Analar grade, and water was distilled
and then deionized.

Samples (0.2 g wet weight) were digested with 2.5 ml 70% nitric
acid for 90 min at 135° C in Teflon pressure-decomposition vessels
with stainless steel casings [59]. After cooling, the digests were

15

washed quantitatively into 20-ml glass beakers with distilled deio-
nized water, and the contents were evaporated to dryness on a hot
plate. The residues were allowed to dry and were then dissolved in
exactly 1-2 or 5 ml 0.5% (v/v) nitric acid, depending on the sample
weight. Undissolved material was separated by means of acrodisc
filters (0.45 uM) attached to a syringe. An intermediate platinum stock
solution was used for calibrating the instrument. It was prepared by
dissolving a control tissue sample in nitric acid as described above,
then spiking the dissolved control sample with the cisplatin injection
solution to give a concentration of 325 g/l

The instrument was calibrated with three working standards of
32.5, 65.0, and 130 ug/l by dispensing into the graphite furnace 2, 4,
and 8 pul intermediate stock solution made up in each case to a volume
of 20 ul with 0.5% (v/v) nitric acid. Sample solutions of 15 ul were
also made up to a total volume of 20 ul and then analyzed for platinum
using the concentration mode of the spectrophotometer. Sample
solutions with concentration readings outside the calibration range
were diluted accordingly, then reanalyzed. All measurements were
done in duplicate. After the analysis of every two samples, the
instrument was recalibrated with the intermediate working standard
by a resloping procedure. The lower limit of quantitation for this
method was 0.05 pg/g as compared with the lower limit of quantitation
of 0.08 pg/g for our earlier assay methodology used in the first 30 of
our 83 patients [58].

Patients’ charts were reviewed for patients’ characteristics and
treatment details. Kidney tissue variables included kidney-cortex and
kidney-medulla platinum concentrations.

All statistical analyses were performed using the computer pro-
grams SPSS-PC (version 4.01) and BMDP PC-90. Since many of the
continuous variables were not normally distributed, only the following
non-parametric tests were used for initial analyses: Spearman rank-
order correlation, to examine associations between kidney tissue
variables and all continuous variables, and Kruskal-Wallis one-way
analysis of variance (K-W ANOVA), to examine differences in kidney
tissue variables between (among) groups defined by the nominal and
ordinal factors.

Based in part on these analyses, variables were selected for
inclusion in hierarchical stepwise multiple regression. The first block
of variables entered into the models included the dose per course and
the cumulative dose. The second block included factors that were
statistically significant (P <0.05) in the univariate analyses. The third
block included biologically important but not statistically significant
variables.

Prior to running the multiple regression, we tested for normality the
distribution of each of the continuous variables to be included in the
model using the Kolmogorov-Smirnov (K-S) test. Any variable with a
P value of <0.10 was transformed. Initially, square root and log base-
10 transformations were used. If these transformations were not
successful in normalizing a variable, the z-scores of the raw scores
were examined. Any individual data point with a z-score of >3.5 was
reduced to the next lowest observed value with a z-score of <3.5.
These “truncated” variables, along with their square-root and log-10
transforms, were then tested for normality using the K-S test. This
procedure was repeated as necessary. These steps were sufficient for
normalizing all variables except albumin.

The dependent measures also had to be transformed. The square
roots of kidney-cortex and kidney-medulla platinum concentrations
were used in the multiple regression analyses. Dummy coding (0 = no
vs 1 = yes or O = normal vs 1 = abnormal) was used for the
dichotomous variables, and the five-level ordinal factor, performance
status, was treated as a continuous variable.

Multiple regression uses listwise deletion of missing cases. Among
the total of 83 patients, 58 had nonmissing values for all variables to be
included in the kidney-cortex platinum concentration analysis and 56,
for the kidney-medulla platinum analysis. Since most patients (over
72%) had values missing for only one factor (maximum of three),
missing values for each factor were replaced with means, and patients
with missing information as to whether or not they had received a
specific drug along with cisplatin were coded as if they had not
received the drug. One factor to be included in block 3 of the cortex
model, cisplatin infusion duration, was not considered for the analysis,
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Table 1. Spearman rank-order correlation coefficients: kidney-cortex
and kidney-medulla platinum concentrations versus continuous patient
factors

Table 2. Median human autopsy kidney-cortex and -medulla con-
centrations as a function of categorical patient factors

Kidney-cortex Kidney-medulla

correlating significantly with kidney platinum concentrations in uni-
variate analyses

¢ Included in block 3 in multiple regression analyses: other factors of
potential biological significance

as over 50% of the cases had missing values for this variable despite a
thorough review of patients’ medical records, nursing notes, and
pharmacy records.

Results

The 83 patients included in this study included 52 men and
31 women. They had received lifetime cumulative cisplatin
doses of 10-1120 (median, 112) mg/m? and had died at
<1-609 (median, 38) days after their last treatment with
cisplatin. Kidney-cortex platinum concentrations ranged
from 0 (e., <0.05 pug/g) to 14.8 (median, 2.04) pug/g,
whereas kidney-medulla concentrations varied from 0 to
15.5 (median, 1.78) pg/g.

Characteristic Spearman rank-order coefficients platinum platinum
: concentration concentration
Kldpey-cortex Kidney-medulla [pg/gl fug/gl
platinum platinum )
concentration concentration Median (n) Median (n)
Cisplatin dose mg/m?2: Gender:
Per course 0.32%c 0.34%¢c F 2.10 (€2)) 1.37 (30)
Cumulative 0.16¢ 0.26%¢ M 1.98 (52) 2.00 (50)
Time2 —0.45%d —0.36%d . .
Age 0.01 o011 History of diabetes:
Creatinine 0.05 0.04 No 204 (7)) 180  (75)
Urea 0.26%d 0.20%%e Yes 1.64 ) 1.30 3)
Uric acid —0.04 0.04 History of hypertension:
Hemoglobin -0.16 -0.05 No 1.75 (66)**v  1.59 (64)*a
Albumin —0.22%d ~0.11 Yes 2.27 an 2.79 (16)
Total protein -0.14 -0.03 . .
Calcium _0.20%*e -0.10 History of atherosclerosis:
Magnesium 0.10 0.03 No 212 @) 171 (40)
 Chloride ~0.05 0,06 Yes 198 @y 200 @O
Sodium 0.02 0.05 Total volume i.v. hydration on
Potassium —0.08 -0.06 day of cisplatin administration:
Carbon dioxide 0.05 0.10 <11 2.11 (28) 1.98 (28)
Phosphorus -0.06 0.03 1-21 2.17 42) 2.08 40)
Bilirubin 0.14¢ 0.16 >21 1.39 (12) 1.23 (11)
AST 0.16 0.08 Hvoerbilirubinemia:
ALT 012 0.07 yperbilirubinemia: e
Lactate dehydrogenase 0.16 0.25%d No 1.91 (76)**b 1,75 (73)
Yes 4.00 (5) 340 5)
Glucose —0.07 -0.03
Hydration volumeb —0.13¢ —0.16¢ ECOG performance status
Mannitol (20%) volume 0.02¢ -0.05 0 1.31 (8)p 1.30 (8)b
Cisplatin infusion duration 0.02 0.04 1 1.45 (15) 1.51 (14)
- 2 227 @1 240  (19)
P <0.05 3 2.18 (25) 1.40 (25)
**0.05 <P <0.10 4 2.50 (12) 2.50 (12)
@ Time in days from the last treatment with cisplatin to death . .
b Total volume of intravenous fluids on the day of cisplatin admin- Route of cisplatin
istration administration:
¢ Included in block 1 in multiple regression analyses: cisplatin dose Intravenous 217 (4 2.10 (52)
factors Intracarotid 1.59 (15) 1.57 (15)
d Included in block 2 in multiple regression analyses: factors Intrahgpatic ) 3.04 (8) 2.20 @)
Other intraarterial 1.09 6) 1.54 (6)

Number of days cisplatin was

given on each course:
1 day 1.91 (68) 1.67 (65)
2-5 days 2.18 (15) 1.78 (15)

* P <0.05, K-W ANOVA

** (.05 <P <0.10, K-W ANOVA

a Included in block 2 in multiple regression analyses: factors
correlating significantly with kidney platinum concentrations

b Included in block 3 in multiple regression analyses: other factors of
potential biological importance

Table 1 summarizes the Spearman rank-order correla-
tion coefficients of kidney-cortex and kidney-medulla pla-
tinum concentrations versus various continuous in-
dependent variables, and Tables 2 and 3 summarize human
autopsy kidney-cortex and -medulla concentrations as a
function of categorical patient demographic/history factors
and concurrent drug use. These univariate statistics must be
interpreted cautiously, since the large number of statistical
tests increases the possibility of false positives.



Table 3. Median human autopsy kidney-cortex and -medulla con-
centrations as a function of concurrent drug use

Kidney-cortex Kidney-medulla

platinum platinum
concentration concentration
[ug/g] [Lg/g]
Median  (n) Median  (n)
Corticosteroids:
No 1.92 @ 1.24 @)
Yes 2.04 75 1.88 (72)
Prochlorperazine:
No 2.15 (30) 2.10 (30)
Yes 1.98 (52) 1.67 (49)
Metoclopramide:
No 1.00 (33)*a 1.22 (32)*a
Yes 2.45 (50) 2.30 (48)
Phenytoin:
No 2.19 OOy 230 (57)*a
Yes 1.60 (23) 1.44 23)
Mannitol:
No 2.04 (13)p 2.40 13y
Yes 1.83 (60) 1.71 (38)
Doxorubicin:
No 2.13 (68) 2.00 67)
Yes 1.05 (15) 1.57 13)
Cyclophosphamide:
No 2.07 (74) 1.78 (72)
Yes 145 [C))] 2.15 (8}
Etoposide:
No 1.98 (60) 1.59 (57)
Yes 2,12 (23) 2.00 (23)

* P <0.05, K-W ANOVA

*¥*+0.05= P =0.10, K-W ANOVA

2 Included in block 2 in multiple regression analyses: factors
correlating significantly with kidney platinum concentrations

b Included in block 3 in multiple regression analyses: other factors of
potential biological importance

Kidney-cortex platinum concentrations

In the univariate analyses, factors that were associated
(P=0.05) with kidney-cortex platinum concentrations were
the cisplatin dose per course, the pretreatment serum urea
level, metoclopramide use (positive correlations), the time
from the last cisplatin treatment to death, and the pre-
treatment serum albumin value (negative correlations).
Factors that approached significance (0.05=P=0.10) were
a history of hypertension, hyperbilirubinemia (positive
correlations), the serum calcium level, and phenytoin use
(negative correlations).

Results of the multiple regression analysis (Table 4)
indicated that after controlling for the cisplatin dose per
course, the patient characteristics that were significantly
associated with kidney-cortex platinum concentrations
were concurrent metoclopramide use (positive coefficient),
the time from the last treatment to death, and concurrent
phenytoin use (negative coefficients).

All except 13 patients had received mannitol with their
cisplatin. The major exceptions were patients who had re-
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ceived very low cisplatin doses. Mannitol use did not
correlate significantly with kidney-cortex or -medulla pla-
tinum concentrations in univariate analysis or following
correction for the cisplatin dose in multivariate analyses.
Nevertheless, kidney platinum concentrations did appear to
be somewhat lower in those patients who had received
mannitol (Table 3). In addition, all except 28 of the patients
received total intravenous hydration volumes of =1000 ml
in the 24-h period around the time of cisplatin adminis-
tration. In this patient population, the hydration volume did
not correlate significantly with the cisplatin dose per course
(r = =0.02). As noted in,Table 2, kidney-cortex platinum
concentrations were comparable in patients who had re-
ceived total intravenous hydration of <11 and in those who
had received 1-2 1. Patients who had received >2 1 in-
travenous fluids did have the lowest median kidney-cortex
platinum concentrations, but there were only 12 patients in
this group, and the differences did not achieve statistical
significance in either univariate or multivariate analyses,
despite correction for the effect of the cisplatin dose per
course by multiple regression.

Since the time from the last treatment to death ac-
counted for 16% of the total variability in kidney-cortex
platinum concentrations (controlling for the dose per
course), whereas the dose per course uniquely accounted
for only 7% of the variability, we were concerned that our
analyses might be sensitive only to factors that affected
long-term retention of platinum in tissues and that they
might be less sensitive to any additional factors that might
affect only short-term cisplatin retention. Hence, we re-
peated the regression analysis on the 50% subpopulation of
patients (41 patients) having the shortest intervals from the
last treatment to death. After controlling for the time from
the last treatment to death and the cisplatin dose per course,
the only factor that entered the model was concurrent use of
metoclopramide.

Kidney-medulla platinum concentrations

Factors that correlated (P <0.05) with kidney-medulla
cisplatin concentration in univariate analyses (Tables 1-3)
were the cumulative lifetime cisplatin dose, the cisplatin
dose per course, the lactate dehydrogenase level, a history
of hypertension, metoclopramide use (positive correla-
tions), the time from the last treatment to death, and phe-
nytoin use (negative correlations). The serum urea con-
centration was of borderline importance (positive). Multi-
ple regression analysis for kidney-medulla platinum con-
centrations (Table 5) gave results that were very similar to
those obtained for kidney cortex.

Discussion

In our multivariate analysis, the time from the last treat-
ment to death explained 16% of the variability in kidney-
cortex platinum concentrations after controlling for the
cisplatin dose per course, and kidney platinum concentra-
tions deceased only slowly over several months. This
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Table 4. Summary of results of hierarchical stepwise multiple regression model: the dependent variable is the square root of kidney-cortex platinum

concentration

Block Variables included in block for stepwise analysis

In final model R

R2 Change in R2 Beta (final)

1 sqrt Dose/course cisplatin
logio Cumulative dose mg/m?

2 logie (Time + 10)2
logio Ureab
logio Albumin®
Metoclopramide (no = 0, yes = 1)

3 Calcium
logio Bilirubin®
Hypertension (no/yes)
Hyperbilirubinemia (no/yes)
ECOG Performance status (0—4)
Phenytoin (no/yes)
Mannitol (nofyes)
Volume of i.v. fluid in total

+

0.27 0.07 0.07 0.111

0.48 0.23 0.16 —0.423*

0.59 0.35 0.12 0.338%*

0.62 0.38 0.03 —0.189*

sqrt, Square root

* P <0.05, t-test for coefficient, final model

2 Time from last cisplatin treatment to death, in days

b Transformation included “truncated” extreme data values

¢ The change in R? as one goes down the column indicates the amount
of wvariability in kidney-cortex platinum concentration uniquely

explained by a variable, controlling for the prior factors included in
the model. Hence, the dose per course explains 7% of the variability
and the time from treatment to death explains 16%, conirolling for
dose per course and other factors

Table 5. Summary of results of hierarchical stepwise multiple regression model: the dependent variable is the square root of kidney-medulla

platinum concentration

Block Variables included in block for stepwise analysis In final model R R? Change in R? Beta (final)

1 sqrt Dose/course cisplatin + 0.34 0.12 0.12 0.151
logio Cumulative dose mg/m?

2 Metoclopramide (no = 0, yes = 1) + 0.51 0.26 0.14 0.371*
logio (Time + 10y + 0.60 0.36 0.10 -0.363*
logio LDHb
Hypertension (no/yes)

Phenytoin (no/yes) + 0.67 0.44 0.09 -0.305*

3 logio Ureab

Total volume i.v. fluids
ECOG performance status (0-4)
Mannitol (no/yes)

sqrt, Square 100t

* P «<0.05, t-test for coefficient, final model

2 Time from last cisplatin treatment to death, in days

b Transformation included “truncated” extreme data values

¢ The change in R? as one goes down the column indicates the amount
of variability in kidney-cortex platinum concentration uniquely

finding is similar to that obtained in our earlier study [58]
on the first 30 of this series of 83 patients.

In our earlier study, we did not find a correlation be-
tween kidney-cortex platinum concentrations and the cu-
mulative lifetime cisplatin dose [58]. In the present study,
involving a larger number of patients, kidney-cortex plati-
num concentrations still did not correlate significantly with
the cumulative cisplatin dose in univariate nonparametric
analysis. In multivariate analyses, the cisplatin dose per
course emerged as being more closely associated with
kidney-cortex platinum concentrations than was the cu-
mulative cisplatin dose. This could be explained if most
drug washes out of the kidney after each treatment and only
the last (most recent) treatment course is accounting for
drug retained in the kidney. However, our ability to detect

explained by a variable, controlling for the prior factors included in
the model. Hence, dose per course explains 12% of the variability, time
from treatment to death explains 10%, controlling for dose per course,
etc

cisplatin in human kidney autopsy samples for many
months after the last treatment argues strongly against this
explanation. Alternatively, this observation raises the
question as to whether most cisplatin uptake into the kidney
occurs with the first course of treatment, with little uptake
occurring during subsequent treatments. However, this
would be difficult to explain pharmacologically, and it goes
against animal data published by Litterst and Schweitzer
[60] that suggest that tissue retention of drug may actually
be greater with later versus earlier drug courses. Our ob-
servations are nevertheless in keeping with the findings by
at least some other investigators that cisplatin ne-
phrotoxicity [11, 61 -64] and kidney platinum-DNA adduct
concentrations [65] correlate poorly with the cumulative
cisplatin dose.



We have recently found in studies in mice that cell
membrane lipids in the mouse kidney undergo substantial
change after treatment of the animal with cisplatin (J.M.
Molepo and R. Goel, unpublished data). We have also
found in studies in tumor cell lines that the cell-membrane
lipid characteristics appear to correlate with cisplatin up-
take [66, 67]. Hence, one might speculate that the first
treatment with cisplatin induces cell membrane changes in
the kidney that then limit the uptake of further cisplatin into
the kidney.

Alternatively, it is possible that the potential effect of
high kidney platinuom concentrations on nephrotoxicity
could help explain the relatively poor correlation of kidney-
cortex platinum concentrations with the cumulative cis-
platin dose; i.e., patients with particularly high kidney-
cortex concentrations after an early course of therapy might
also have experienced early clinical cisplatin nephro-
toxicity and might therefore have had their retreatment
limited. Hence, early high kidney-cortex platinum con-
centrations would result in the inability to deliver high
cumulative cisplatin doses. The latter explanation is in
keeping with our earlier studies of cisplatin nephrotoxicity
in which we had found an inverse correlation between the
cumulative cisplatin dose and clinical nephrotoxicity with
the first cisplatin treatment [3].

We are unaware of any data linking the antiemetic drug
metoclopramide to cisplatin nephrotoxicity in animals [68]
or in the clinical setting. However, metoclopramide an-
tagonizes renovascular dopamine receptors [68] and aug-
ments cisplatin antitumor efficacy in preclinical systems,
possibly through direct or indirect inhibition of the DNA
repair enzyme polyadenosine-diphosphoribosyl transferase
[69]. One might speculate that if metoclopramide inhibited
the removal of platinum adducts from kidney DNA, it
could thereby increase kidney platinum concentrations by
increasing the amount of platinum left bound to DNA. An
argument against this explanation is the observation that
only a relatively small fraction of total cellular cisplatin is
bound to DNA [70, 71].

It is unclear whether this association of metoclopramide
use with kidney-cortex platinum concentrations is of any
clinical significance, as the association uniquely explained
only 12% of the variability in kidney-cortex platinum
concentrations in multivariate analysis. However, we have
also previously found an association between metoclopra-
mide use and the development of cisplatin peripheral
neuropathy [72]. The antiemetic prochlorperazine reduces
cisplatin nephrotoxicity in mice, but the mechanism of this
nephroprotection is unknown [30]. It is possible that our
results were due to a reduction in kidney platinum con-
centrations in those patients who had received pro-
chlorperazine instead of metoclopramide as their major
antiemetic rather than being due to augmentation of kidney
platinum concentrations by metoclopramide. However, the
mouse studies did not document any alteration in kidney
platinum concentrations by prochlorperazine (despite the
reduction in nephrotoxicity) [30], and the kidney-cortex
platinum concentrations detected in our patients who had
received prochlorperazine were only slightly lower than the
concentrations measured in those who had not received this
medication.
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Since all of our autopsy specimens were collected in the
era prior to availability of the 5-hydroxytryptamine-3 (5-
HT3) antagonists, we have no data on the effect of 5-HT3
antagonists on kidney platinum concentrations, and we are
not aware of any data indicating that there is less cisplatin

nephrotoxicity with the administrations of 5-HT3 antago-

nists as compared with metoclopramide. Nevertheless, in
light of our observations on the apparent effect of meto-
clopramide on kidney-cortex platinum concentrations, we
feel that it would be worthwhile to test whether higher
doses of cisplatin can be achieved safely with the 5-HT3
antagonists than is possible with metoclopramide.

Kidney-cortex platinum concentrations correlated in-
versely with phenytoin use in this study, and we had pre-
viously found that phenytoin use also correlated with re-
duced cisplatin nephrotoxicity [3]. The reasons for this
association are unclear, although phenytoin is known to
alter the flux of several cations across cell membranes [73].
However, a recent randomized study of phenytoin admin-
istration initiated immediately before the first course of
cisplatin failed to indicate any protection from cisplatin
nephrotoxicity (D. Stewart, unpublished data). Hence, any
possible phenytoin protection from cisplatin nephrotoxicity
may require prolonged phenytoin administration prior to
the first dose of cisplatin.

Prehydration with or without mannitol has resulted in a
substantial reduction in cisplatin nephrotoxicity [1, 2], but
neither mannitol use nor the intravenous hydration volume
correlated significantly with kidney platinum concentra-
tions in our study. Since most patients were treated as
outpatients, we did not have details of the amount of oral
hydration patients had received, although it is our practice
to encourage patients to drink six to eight glasses of fluid
per day on the day of cisplatin administration and for the
first several days after cisplatin treatment. In any event,
within the limitations of this study, we could not detect any
significant effect of the hydration volume on kidney-cortex
platinum concentrations, and we have not found any sig-
nificant effect of the hydration volume on the risk of cis-
platin nephrotoxicity in our previous studies [3]. Interest-
ingly, although there is general agreement that generous
hydration is important for decreasing the risk of cisplatin
nephrotoxicity, there is little information on the fluid vo-
lume that is optimal or on the minimal fluid volume that is
required. The data from this study and from our previous
studies of cisplatin nephrotoxicity [3] suggest that the
minimally required fluid volume may be somewhat lower
than that used routinely by many groups. Further study of
this aspect is warranted, since it could potentially facilitate
the administration of cisplatin on an outpatient basis.

In univariate analysis, associations of kidney-cortex
platinum concentrations with hyperbilirubinemia and
serum calcium levels approached statistical significance.
Neither of these variables was significantly associated with
kidney-cortex platinum concentrations after correction for
associations with other factors, but both may merit further
study. We previously found that hyperbilirubinemia was
associated with increased cisplatin nephrotoxicity, whereas
serum calcium levels correlated inversely with cisplatin
nephrotoxicity [3]. On the other hand, we found that serum
calcium values correlated directly and serum bilirubin le~
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vels correlated inversely with human tumor platinum con-
centrations and plasma-tumor transfer constants after cis-
platin administration [74] and that serum calcium levels
correlated directly with the development of cisplatin-in-
duced peripheral neuropathy [3, 72]. Hence, if serum bi-
lirubin and calcium levels actually do affect tissue cisplatin
uptake or retention, the nature of the effect may be complex
and tissue-specific.

We are currently analyzing the effect of several different
factors on cisplatin nephrotoxicity. As part of these studies,
we plan to assess whether kidney-cortex platinum con-
centrations are associated with cisplatin nephrotoxicity
after correction for associations with other factors. In our
earlier study [S58], cisplatin nephrotoxicity did correlate
with kidney-cortex platinum concentrations after correction
for the cisplatin dose and the time from the last cisplatin
treatment to death, suggesting that cisplatin nephrotoxicity
is tissue-concentration-dependent. If such an association
were confirmed, it would support the concept that new
methods designed to reduce kidney-cortex platinum con-
centrations could also reduce nephrotoxicity. We have
previousty found that the dorsal root ganglion is the part of
the nervous system with the highest platinum concentra-
tions after cisplatin administration, that it is the site of the
most prominent and earliest nervous system damage, and
that cisplatin peripheral neuropathy is proportional to pla-
tinum concentrations in the dorsal root ganglion [72,
75-79]. Moreover, in our previous studies, tumor platinum
concentrations correlated with antitumor efficacy in hu-
mans [80]. Hence, cisplatin toxicity and efficacy may be
concentration-dependent in humans. This possibility is in
keeping with in vitro data and is also consistent with our
observations on several other antineoplastic agents [81—
85]. However, there must also be a substantial element of
individual tissue susceptibility, since some organs that at-
tain high concentrations of antineoplastic agents have only
a low propensity to develop toxicity [57, 81-85].

In this study, we found that the factors that correlated
most closely with kidney-medulla platinum concentrations
in multivariate analyses were identical to those that corre-
lated most closely with kidney-cortex platinum concentra-
tions. Although it is possible that the kidney medulla could
be an important site of cisplatin toxicity, both we [86, 87]
and other investigators [53-56] have found that the major
histopathologic evidence of cisplatin nephrotoxicity occurs
in the kidney cortex and in the corticomedullary junction.

In summary, platinum concentrations in human autopsy
specimens of kidney cortex correlated inversely with the
time from the last treatment to death and directly with the
cisplatin dose per course. Metoclopramide use was asso-
ciated with increased kidney-cortex platinum concentra-
tions, suggesting that higher cisplatin doses may be
achievable with new 5-HT3 antagonists than with meto-
clopramide. Furthermore, patients who had received phe-
nytoin showed reduced kidney-cortex platinum concentra-
tions, suggesting that phenytoin should perhaps be studied
further as a possible means of reducing nephrotoxicity and
augmenting maximally achievable cisplatin doses. The in-
travenous hydration volume did not correlate significantly
with kidney-cortex platinum concentrations, suggesting
that it may be feasible to use hydration volumes lower than

those used by some groups. This study and several previous
studies we have conducted [57, 38, 75, 80-85, 88—93]
indicate that despite the obvious problems involved in in-
terpreting data on drug concentrations in human autopsy
tissue, potentially useful information can be obtained.
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